Enhancement of Synthetic Trichoderma-Based Enzyme Mixtures for Biomass Conversion with an Alternative Family 5 Glycosyl Hydrolase from Sporotrichum thermophile

نویسندگان

  • Zhuoliang Ye
  • Yun Zheng
  • Bingyao Li
  • Melissa S. Borrusch
  • Reginald Storms
  • Jonathan D. Walton
  • Alberto G. Passi
چکیده

Enzymatic conversion of lignocellulosic materials to fermentable sugars is a limiting step in the production of biofuels from biomass. We show here that combining enzymes from different microbial sources is one way to identify superior enzymes. Extracts of the thermophilic fungus Sporotrichum thermophile (synonym Myceliophthora thermophila) gave synergistic release of glucose (Glc) and xylose (Xyl) from pretreated corn stover when combined with an 8-component synthetic cocktail of enzymes from Trichoderma reesei. The S. thermophile extracts were fractionated and an enhancing factor identified as endo-β1,4-glucanase (StCel5A or EG2) of subfamily 5 of Glycosyl Hydrolase family 5 (GH5_5). In multi-component optimization experiments using a standard set of enzymes and either StCel5A or the ortholog from T. reesei (TrCel5A), reactions containing StCel5A yielded more Glc and Xyl. In a five-component optimization experiment (i.e., varying four core enzymes and the source of Cel5A), the optimal proportions for TrCel5A vs. StCel5A were similar for Glc yields, but markedly different for Xyl yields. Both enzymes were active on lichenan, glucomannan, and oat β-glucan; however, StCel5A but not TrCel5A was also active on β1,4-mannan, two types of galactomannan, and β1,4-xylan. Phylogenetically, fungal enzymes in GH5_5 sorted into two clades, with StCel5A and TrCel5A belonging to different clades. Structural differences with the potential to account for the differences in performance were deduced based on the known structure of TrCel5A and a homology-based model of StCel5A, including a loop near the active site of TrCel5A and the presence of four additional Trp residues in the active cleft of StCel5A. The results indicate that superior biomass-degrading enzymes can be identified by exploring taxonomic diversity combined with assays in the context of realistic enzyme combinations and realistic substrates. Substrate range may be a key factor contributing to superior performance within GH5_5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-Glucosidases from the Fungus Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications

β-glucosidases catalyze the selective cleavage of glucosidic linkages and are an important class of enzymes having significant prospects in industrial biotechnology. These are classified in family 1 and family 3 of glycosyl hydrolase family. β-glucosidases, particularly from the fungus Trichoderma, are widely recognized and used for the saccharification of cellulosic biomass for biofuel product...

متن کامل

Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set.

The high cost of enzymes is a major bottleneck preventing the development of an economically viable lignocellulosic ethanol industry. Commercial enzyme cocktails for the conversion of plant biomass to fermentable sugars are complex mixtures containing more than 80 proteins of suboptimal activities and relative proportions. As a step toward the development of a more efficient enzyme cocktail for...

متن کامل

Isolation and characterization of a novel endo-β-1,4-glucanase from a metagenomic library of the black-goat rumen

The various types of lignocellulosic biomass found in plants comprise the most abundant renewable bioresources on Earth. In this study, the ruminal microbial ecosystem of black goats was explored because of their strong ability to digest lignocellulosic forage. A metagenomic fosmid library containing 115,200 clones was prepared from the black-goat rumen and screened for a novel cellulolytic enz...

متن کامل

Expression analyses of endoglucanase gene in Penicillium oxalicum and Trichoderma viride

The expression of endoglucanase gene and protein profile belonging to two fungal species, Penicillium oxalicum 1SMS and Trichoderma viride 156MS with high cellulase enzyme activity, was investigated. Fungal isolates were cultured on inducer CMC medium and then the amount of released sugar and protein were assayed every three days for a month, using arsenate molybdatereagent and Bradford method,...

متن کامل

Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues

BACKGROUND Trichoderma reesei is one of the most important fungi utilized for cellulase production. However, its cellulase system has been proven to be present in suboptimal ratio for deconstruction of lignocellulosic substrates. Although previous enzymatic optimization studies have acquired different types of in vitro synthetic mixtures for efficient lignocellulose hydrolysis, production of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014